Smart Grid Deployment Plan

Smart Utility - Grid Reliability & Resiliency Goals

Smart Utility Vision

Transmission

- Implement project to improve speed of response to grid issues
- Better utilization of data to proactively avoid issues
- More efficient utilization of resources

Distribution

- Create a self-healing and resilient grid via real-time information
- Expand communications and remote control of devices
- Provision of balancing, storage, reliability and integration services to customers

Utilization of Distribution Automation

SUMMARY OF CURRENT 12KV SUBSTATION SCADA ALLOCATION (As of 1/25/2011)

Note: Figures represent 12kV distribution only. Additional customers are served on 4kV distribution.

	SCADA	NON-SCADA	TOTAL
SUBSTATIONS	79	27	106
CIRCUITS (with SCADA @ SUB)	673	100	773
CUSTOMERS (with SCADA @ SUB)	1,111,915	150,763	1,262,678
FORECASTED LOAD (MW)	4573	526	5099

- Distribution Planning utilizes SCADA to plan and design the system
- Distribution Operations can remotely operate breakers and switches
- Remote control of devices to automate functions
- Data used to investigate customer issues
- Diagnose and solve system problems
- Expedite electric load curtailment activities

AMI Data Mining

Outage and Distribution Management System

<u>Scope:</u> The new system will interface with SDG&E Geographic Information System (GIS) data, real-time information from Supervisory Control and Data Acquisition (SCADA), Condition-Based Maintenance (CBM) and Smart Meter systems to detect outages and develop plans to

restore service to customers

Timeline:

Jan – Mar: End to End and User Acceptance Testing

April – June: Training
 May 31st: Storm Drill

Early July: Go Live

Functionality:

- Distribution management Access to near real-time information to assist with system optimization
- Unplanned Outages Faster and better prediction of power system failure points
- Planned Switching Automate the generation of daily switching plans for working on the electric distribution system
- Major events Improve the assessment, restoration planning and execution procedures
- Reliability reporting Automate the validation of the outage restoration reporting process

Fire Hardening Efforts

Conditioned Based Maintenance (CBM)

Project
Description:

CBM will allow SDG&E to extend the useful life and make greater utilization of transmission and distribution substation assets by using technology to monitor the assets' health and performance.

Current Status: Currently installed at 52 of 111 substations year end 2011 98 Distribution substations and 17 transmission substation year end 2015

What Does CBM Monitor on Distribution Transformers?

- Detect Loss of Cooling Fans/Pumps
- Detect Failed Control Contactor for Cooling Fans/Pumps
- Collect Data on Run Hours for Fans/Pumps

- 0il Temperature
- Top 0il
 - LTC
 - Main Tank / LTC Differential
- Winding Hot Spot Temperature (Calculated)
- LV Load Current
- Ambient Temperature
- Hydrogen / Moisture Monitor
- Cooling System Manager / Monitor
- LTC Position Indication & Operations Counter
- LTC Motor Energy Monitor
- HV Bushing Power Factor Monitor
- On-line Main Tank 3 gas DGA Monitor
- On-line LTC Tank DGA Monitor (selected units)
- LTC Vacuum bottle integrity
- Nitrogen Pressure

Levels of PV on the Grid

Voltage

- Overvoltage
- Voltage fluctuations
- LTC/regulator/cap bank impact
- Unbalance

Protection

- Unintentional islanding "potential"
 - Load mismatch
 - Interconnect transformer connection
- load rejection overvoltage
- Reverse power (directional relaying)
- Voltage events
- Frequency events

Operational

- Intermittency/Variability
- Observability/ Monitoring
- Forecasting PV levels
- Off Peak production

Demand/Energy

- PV impact on peak demand/load growth
- Annual losses
- Annual energy consumption
- Impact on CVR

Thermal overloads

Power Quality

- Harmonics
 - Flicker
 - CEBMA Violations

Utility Safety Practices

- Lineman practices
- Hotline/deadline work
- Improved mapping and tracking of PV to ensure safety

Solutions?

- Circuit modifications
 - Impedance modification
 - Controls
- Demand response
 - •Slower dP/dt events?
- 4 quadrant control
 - Utility dynamic VAr devices
 - Utility storage
 - Customer inverters/storage
- Regulatory/Standards Change
 - •Existing Rules require modification to accommodate high PV penetration
 - •Draft IEEE 1547.8, IEC 61850 can be utilized today
 - Similar to German Grid Code

Asset Management - Replacement Strategies

PredictedCable Failures Derivation

Let

Installed Base Miles = B

Cummulate Miles remaining in Year n = MR(n)

Failures in Year n = F(n)

Failure Rate (as a function of remaining cable in Year n = FR(n)

Average Miles per Failure = AMF

Proactive Replacement Miles in Year n = PM(n)

Probability that Proactive Replacement Prevents a Failure in Year n = Pn

Pn is the expected value of a Hypergeometric distribution

Time	Cummulative Miles Remaining	Failures	Proactive
0	MR(0) = B	0	0
1	$MR(1) = MR(0) - (F(1) \cdot AMF + PM(1))$	$F(1) = \frac{FR(1) \cdot B - P1PM(1)}{AMF}$	PM(1)
2	$MR(2) = MR(1) - (F(2) \cdot AMF + PM(2))$	$F(2) = \frac{FR(2) \cdot MR(1) - P2 \cdot PM(2)}{AMF}$	PM(2)
3	$MR(3) = MR(2) - (F(3) \cdot AMF + PM(3))$	$F(3) = \frac{FR(3) \cdot MR(2) - P3 \cdot PM(3)}{AMF}$	PM(3)
n	$MR(n) = B - \left(AMF \cdot \sum_{i=1}^{n} F(i) + \sum_{i=1}^{n} PM(i)\right)$	$F(n) = \frac{FR(n) \cdot MR(n-1) - Pn \cdot PM(n)}{n}$	PM(n)

AMF

Asset Management - Replacement Strategies

Asset Management - Replacement Strategies

Cable failure tracking method

- Data collection
 - Outage reports
 - Map review
 - As-built
 - Equipment failure reports
- Cable failure database

Cable failure rates

- Use of cable failure database
- Statistical method for determining failure rates
- Examples of cable failure rates
- Feeder and branch circuit reliability model

Asset Management - Replacement Strategies

Failure rates by conductor mile in outages/year					
Cable Type All vintages Bad vintages					
XLPE-PEJ	PE-PEJ 0.00073 N/A				
XLPE	0.554	0.643			
HMWPE	0.102	0.155			

Options	CAIDI Gain	Units
Sub-Fusing	N/A	N/A
Looping	48	minutes
Fault Indicator Addition	20	minutes
Cable Change Out	N/A	N/A

Other Constants			
System Average CAIDI (min)	217		
System Customers	1,300,000		
LACC Factor	0.1211		

Annualized Cost Savings per circuit foot:					
Cable Type vintages Bad vintages					
XLPE	\$	3.40	\$	3.96	
HMWPE	\$	0.63	\$	0.95	

		Phase
	\$ 6.50	Single phase
Cable Replacement Cost	\$ 9.30	2-phase
(per foot)	\$ 12.00	3-phase

DO NOT CHANGE ANY DATA ABOVE THIS GRAY LINE.

Cable Change Out				
Item	Phase	Q	uantity	
	Single		-	
Main Branch Total Footag	2-phase		-	
	3-phase		-	
	Single		-	
Replaced Branch Footage	2-phase		-	
	3-phase		-	
Failure Rate			0.643	
Annualized Cost Saving	Annualized Cost Savings Rate		3.96	
Branch Total Customers			272	
Cable Replacement Cost		\$	-	
Other Costs		\$	-	
Project Cost		\$	-	
Gain In Number of Fa	ilures		0.00000	
SAIDI Gain			-	
SAIFI Gain			-	
PBR Gain		\$	-	
Annualized Cost Savings		\$	-	
RTR			0.000	

Sub-Fusing					
Item Phase			uantity		
	Single		-		
Main Branch Total Footage	2-phase		-		
	3-phase		-		
	Single		-		
Sub-fused Branch Footage	2-phase				
	3-phase		-		
Failure Rate			0.643		
Branch Total Customers			272		
Sub-fused Branch Cust	tomers		58		
Project Cost		\$	25,000		
SAIDI Gain			-		
SAIFI Gain			-		
PBR Gain		\$	-		
RTR			0.000		

Loop	ing		
Item	Phase	Ø	uantity
	Single		-
Main Branch Total Footage	2-phase		-
	3-phase		-
Failure Rate			0.643
Branch Total Customers			272
Project Cost		\$	25,000
SAIDI Gain			-
PBR Gain		\$	-
RTR			0.000

Fault Indicator Addition				
Item	Phase	ā	uantity	
	Single		-	
Main branch total footage	2-phase		-	
	3-phase		-	
Failure Rate			0.643	
Branch Total Customers			272	
Project Cost		\$	8,000	
SAIDI Gain			-	
PBR Gain		\$	-	
RTR			0.000	

436 d2721874412

Summary

- Smart Grid is an evolution not a revolution
 - Pace of technology adoption has increased
- Distribution automation is a foundational technology
- With AMI fully deployed the next task is mining the data
- Foundational IT upgrades essential to future SG technologies
- Mitigation strategies for renewables should be more cost effective with SG technologies
 - Potentially allow higher penetrations than traditional solutions
- Modern communication system is essential for future SG deployment
- CA energy policies require a proactive approach
 - Exploring alternative SG service delivery models, microgrids
 - SG project portfolio in GRC application
 - SG deployment filed with the CPUC